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Universality classes for rice-pile models
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We investigate sandpile models where the updating of unstable columns is done according to a stochastic
rule. We examine the effect of introducing nonlocal relaxation mechanisms. We find that the models self-
organize into critical states that belong to three different universality classes. The models with local relaxation
rules belong to a known universality class that is characterized by an avalanche exponentt'1.55, whereas the
models with nonlocal relaxation rules belong to new universality classes characterized by exponentst'1.35
andt'1.63. We discuss the values of the exponents in terms of scaling relations and a mapping of the sandpile
models to interface models.@S1063-651X~97!03007-9#
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The concept of self-organized criticality~SOC!, proposed
in a seminal paper by Bak, Tang, and Wiesenfeld@1#, has
made considerable impact on a number of fields in the n
ral and social sciences. The paradigm of SOC is an ideal
sandpile where grains added to a pile dissipate their pote
energy through avalanches with no characteristic sc
@1–9#. Early experimental studies of real sandpiles lead
clear disagreement with the numerical models: Bounded
tributions of avalanche sizes were observed instead of
expected power-law dependence@10–14#. On the other hand
recent rice-pile experiments found power-law distributio
of avalanche sizes@15# and tracer transit times@16#. These
results sparked a renewed interest in the study of sand
models@16–23#.

A class of sandpile models with stochastic toppling rul
which is denoted ‘‘rice-pile’’ models, was found to displa
SOC in one dimension with a power-law distribution of av
lanche sizes characterized by the critical exponentt'1.55
@16–20#. Recently, Ref.@24# proposed a mapping of th
model in @16# to the motion of a linear interface through
disordered medium@25#. For this universality class, to whic
we will refer to as the local linear interface~LLI ! universality
class, the mapping allows the determination of all the ex
nents characterizing the dynamics of the pile@24,26# and
shows thatt is clearly different from the mean-field valu
t53/2 ~see, e.g.,@27#!. Several other SOC models have be
conjectured to be in the LLI class@23,24,28,29#. Thus the
question arises of what mechanisms lead to the emergen
the LLI universality class for one-dimensional stochas
sandpile models with a preferred direction. Previously, sa
pile models in higher dimensions have been classified
cording to their degree of ‘‘directedness’’@2,30#.

In this paper we undertake an investigation of the mec
nisms responsible for the emergence of a given universa
class for one-dimensional sandpile models with stocha
toppling rules and we discuss the reasons for the robust
of the LLI universality class. To this end, we study a class
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models with stochastic toppling rules. We use as our ba
model the one we proposed in Ref.@17# and investigate the
robustness of the critical behavior upon modification of t
toppling process. Specifically, we study stochastic variant
the models proposed in@2#.

We find that the local models belong to the LLI unive
sality class and havet'1.55, while the nonlocal model
belong to new universality classes witht'1.35 and
t'1.63. In order to understand the new exponent values,
discuss scaling relations fulfilled by the exponents and
mapping to interface models.

First, we define the class of one-dimensional models: T
system consists of a plate of lengthL, with a wall at i50,
and an open boundary ati5L11. The profile of the pile
evolves through two mechanisms: deposition and relaxat
Deposition is always done ati51 and one grain at a time
During relaxation we look at allactivecolumns of the pile: A
column i of the pile is considered active if, in the previou
time step, it~i! received a grain from columni21, for the
local models, or fromi2 j , j51,2, . . .N, for the nonlocal
models,~ii ! toppled a grain to columni11, or ~iii ! column
i11 toppled one grain to its right neighbor. If a columni is
active and the local slopedhi[h( i )2h( i11).S1, then
with probability p(dhi) several grains will be toppled from
column i . Here we study the case

p~dhi !5min$1,g~dhi2S1!%, ~1!

whereg<1 is a parameter@31#. The number of grainsN to
be toppled is determined by either thelimited ( l ) or unlim-
ited (u) rule @2#:

N5HN0 , ~ l !

dhi2S1 , ~u!.
~2!

The toppled grains are then redistributed according eithe
the local (L) or nonlocal (N) rule @2#

h~ i11!5h~ i11!1N, ~L !

h~ i1 j !5h~ i1 j !11, j51, . . . ,N, ~N!. ~3!
231 © 1997 The American Physical Society



-
ule
e

n
b

r a
se

e
v
wi
u
rs
ch

w
n
e
tr
lity
aw

em

the
h
s.

new

of
to

ed

in
his
ilar

but

lity
ni-
op-
,
ge

ng

the
va-

i-
y,

r-
s

n
lu
to
s
th

e
els
dels
lo-
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Grains toppled to columnsi.L leave the system. We desig
nate the models by the two letters that describe the r
applied: The local limited and unlimited models are referr
to asLl and Lu, while the nonlocal limited and unlimited
models are referred to asNl and Nu. The parameter
p(dhi) describes friction between the grains and accou
for the fact that a large range of ‘‘stable’’ slopes was o
served in the rice-pile experiment. The parameterg accounts
for the effect of gravity on the packing configurations. Fo
discussion of the physical interpretation of the models
also Refs.@17,18#.

We study the models in the slowly driven limit, i.e., w
take the rate of deposition to be slow enough that any a
lanche, that might be started by a deposited particle,
have ended before a new particle is deposited. The sim
tions of the models show that each system quickly ente
steady state which is characterized by varying avalan
sizes and a complex structure in time@17#. The sizes of an
avalanche can be defined in a number of ways. First,
follow the definition of Ref.@15# and calculate the size of a
avalanche as the total potential energy dissipated in betw
deposited particles. In Fig. 1 we show the avalanche dis
butions for the various models. We find that the probabi
density function can be well described by the power-l
form

P~s,L !5s2t f ~s/Ln!, ~4!

where t and n are critical universal exponents.@Alterna-
tively, we have thatP(s,L)5L2b f̃ (s/Ln), whereb5nt.#

FIG. 1. A log-log plot of the probability density of the diss
pated potential energys during an avalanche. For greater clarit
the data for theLu, Nl, andNu were divided by factors of 101,
102, and 103, respectively.P(s) was multiplied bys to make the
change in the exponentt visually clearer. For each model, we pe
formed runs with the order of 107 grains deposited. The result
shown are forL51600,g51/8,S156, andN052 ~for the limited
models!. Other values ofS1 ~ranging from 1 to 6!, 1/g ~ranging
from 4 to 8!, andN0 ~ranging from 2 to 4! were also investigated
without any observable change in the estimate of the expone
The slopes of the straight lines correspond to the exponent va
from Table I. For theNl model the bump before the cutoff leads
finite-size corrections, and we carried out simulations on system
to sizeL520 000 in order to obtain more accurate estimates for
exponents.
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We used plots of consecutive slopes for different syst
sizes to obtain the estimates fort ~see Table I!. Then these
values were used to collapse the data according to Eq.~4!
and extractn.

The results from our numerical simulations show that
Ll andLu models belong to the LLI universality class wit
t'1.55 andn'2.25, in agreement with the results of Ref
@16,17#. On the other hand, for thenonlocalmodels we ob-
tain values of the exponents that signal the existence of
universality classes. The nonlocal limited (Nl) model is
characterized by the exponentst51.3560.05 and
n51.5560.05. The combined change of the number
toppled particles together with a nonlocal relaxation leads
yet a new universality class: For the nonlocal unlimit
(Nu) model, we obtain the exponent valuest51.6360.02
and n52.7560.05. We note that simple power laws, as
Eq. ~4!, in all cases provide us with nice data collapses. T
result should be contrasted with the investigation of sim
rules for the~nonstochastic! models in Ref.@2#, where the
results could not be described by a simple power law,
instead required a multifractal scaling form.

To further test our conclusion regarding the universa
classes for the rice-pile models, we study different defi
tions of avalanche size: When using the total number of t
plings, we find the same values fort andn as quoted above
which is due to the fact that a toppling event on avera
dissipates a fixed amount of potential energy~for a bounded
distribution of slopes!. For the lifetimeT, we find that the
probability density function is well described by the scali
form

D~T,L !5T2yg~T/Ls!, ~5!

with the exponent values listed in Table I~see also Fig. 2!.
These results reassure us that theLl andLu models indeed
belong to the LLI universality class, whereas theNl and
Nu models belong to new universality classes.

Next, we discuss scaling relations that are obeyed by
critical exponents. It is well established that the average a
lanche size scales as

^s&;Lq, ~6!

with the value of the exponentq depending on how the pile
is driven. Here we haveq51 for all models~see, e.g.,@2,23#
for otherq values!. Combining Eqs.~4! and ~6!, we obtain
the exponent relation@2#

n~22t!5q, ~7!

ts.
es

up
e

TABLE I. Critical exponents for the four models studied. Th
definition of the critical exponents and classification of the mod
are given in the text. The data strongly suggest that the local mo
Ll andLu belong to the LLI universality class, whereas the non
cal modelsUn andLn belong to new universality classes.

Model t n y s

Ll 1.5560.02 2.2460.03 1.8360.04 1.4260.03
Lu 1.5660.02 2.2660.03 1.9160.04 1.3760.03
Nl 1.3560.05 1.5560.05 1.6060.05 0.9560.05
Nu 1.6360.02 2.7560.05 2.2060.04 1.5060.04
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56 233UNIVERSALITY CLASSES FOR RICE-PILE MODELS
which is fulfilled by all models. We have use
^s&;Ln(22t) ~in combination witĥ s2&) to obtain alternative
estimates of the critical exponents and we obtain value
complete accordance with those listed in Table I. Relati
similar to Eqs.~6! and ~7! can be derived for the lifetime
regarding the averages^T&,^T2& and then used to extract th
critical exponents. Notice, however, that for theNu model,
^T& is a constant since we havey.2. From the scaling of the
probability densities~4! and ~5! we obtain

n~t21!5s~y21!, ~8!

in agreement with our results (s;Tv, with v5n/s). The
above relations imply that there are only two independ
exponents.

As noted above, it was shown in Ref.@24# that the rice-
pile model in@16# can be mapped to a linear interface mod
described by the continuum equation

]H

]t
5D

]2H

]x2
1h~x,H !. ~9!

HereH, which is obtained ash(x,t)5H(x21,t)2H(x,t),
counts the number of topplings of a given column a
h(x,H) is a quenched ‘‘noise,’’ which is related to the st
chastic toppling probability. The rice-pile dynamics impos
a driving of the interface atx50. The mapping predicts tha
n511x, wherex is the so-called roughness exponent ch
acterizing, e.g., the scaling of the width of the interface w
system sizeL ~see, e.g., @32#!. Numerically, one has
x'1.25 @25#, in excellent agreement with the valu
n'2.25. In addition, the cutoff exponent for the avalanc
lifetime is s5z, wherez is the so-called dynamic expone
that describes the propagation of correlations.

The results presented here show that theLl andLu mod-
els belong to the LLI universality class. This result can
easily understood from the mapping to the linear interfa
model: The toppling of several particles does not change
fact that the growth of the interface is still local. Since t

FIG. 2. A log-log plot of the probability density for the lifetim
of avalanches. For greater clarity, the data for theLu, Nl, andNu
were divided by factors of 10, 103, and 104, respectively. The same
values were used for the parameters as in Fig. 1. The slopes o
straight lines correspond to the exponent values from Table I.
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surface tension term is the relevant term~in the
renormalization-group sense! it follows that the coarse-
grained behavior of the local models is governed by the
terface equation~9! as for the models in Refs.@16,17#.

On the other hand, for theNl andNu models, the nonlo-
cal toppling rules generate nonlocal growth that affects
interface motion. It has previously been shown that nonlo
interactions will in general lead to the emergence of n
universality classes@33,34#, which is confirmed by our ob-
servations for theNl andNu models. The critical exponent
for the interface equations corresponding to theNl andNu
models are not known. We can, nevertheless, qualitativ
understand the change in the values of the exponentt as
follows: In general, we would expect that a nonlocal toppli
rule would lead to a decrease of the value oft because more
columns in the pile are perturbed at every time step, t
creating larger avalanches. This is indeed what happens
the Nl model. However, for theNu model we observe an
increase in the value oft. To understand this result, it i
useful to look at the average slope of the pile and at
distribution of local slopes for the different models~see Fig.
3!. For the limited models, the average slope remains p
tically the same upon the change of the number of partic
toppled: 9.3 for theLl model and 9.1 for theNl model. This
means that the change from one~local! to many~nonlocal!
columns being made ‘‘active’’ works as we described abo
i.e., it leads to a lower value oft. On the other hand, for the
unlimited models, a large change in the average slope
observed when we change the number of particles topp
7.8 for theLu model and 6.2 for theNumodel. This implies
that, on average, only a few particles are toppled from
stable columns for theNumodel, but for theLu model more
particles are toppled and this leads to a higher likelihood
big avalanches. As a result, we conclude that theNu model
should have a higher value oft than theLu model, as is
indeed observed.

the

FIG. 3. A linear-log plot of the probability of the local slopes
the steady state. The parameters of the runs are the same as i
1, except that the system size isL5400. It is visually apparent tha
while the limited models lead to truncated Gaussian distributio
the unlimited models lead to more complicated forms. In particu
theNumodel leads to a nearly exponential decay of the probab
of finding slopes larger thanS1 ~which is related to the increase i
the value oft for this model!.
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In summary, we study a class of rice-pile models that
a simple way, model some of the physical features of
experiments in Refs.@15,16#. We find that for local relax-
ation rules the models belong to the LLI universality cla
that is characterized by the exponentst'1.55 andy'1.87
~modelsLl and Lu). On the other hand, for models wit
nonlocal relaxation rules we obtain more complex dynam
resulting in new universality classes: For theNl model we
obtain t'1.35 andy'1.60, while for theNu model we
obtaint'1.63 andy'2.20. Our results show that nonloc
ev
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rules can increase or decrease the value oft, thus opening
the way for the possibility that the rice-pile experiment
Ref. @15# can be explained by some extension of nonlo
sandpile models by incorporating in detail the rice-grain d
namics.
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