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Universality classes for rice-pile models
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We investigate sandpile models where the updating of unstable columns is done according to a stochastic
rule. We examine the effect of introducing nonlocal relaxation mechanisms. We find that the models self-
organize into critical states that belong to three different universality classes. The models with local relaxation
rules belong to a known universality class that is characterized by an avalanche expedest, whereas the
models with nonlocal relaxation rules belong to new universality classes characterized by expent3s
and7=1.63. We discuss the values of the exponents in terms of scaling relations and a mapping of the sandpile
models to interface modelgS1063-651X%97)03007-9

PACS numbe(s): 64.60.Lx, 05.40+j, 64.60.Ht, 05.70.Ln

The concept of self-organized criticalitpO0), proposed models with stochastic toppling rules. We use as our basic
in a seminal paper by Bak, Tang, and Wiesenfdlll has model the one we proposed in REL7] and investigate the
made considerable impact on a number of fields in the natwobustness of the critical behavior upon modification of the
ral and social sciences. The paradigm of SOC is an idealizeppling process. Specifically, we study stochastic variants of
sandpile where grains added to a pile dissipate their potentidhe models proposed ir2].
energy through avalanches with no characteristic scale We find that the local models belong to the LLI univer-
[1-9]. Early experimental studies of real sandpiles lead tosality class and have~1.55, while the nonlocal models
clear disagreement with the numerical models: Bounded digselong to new universality classes withr~1.35 and
tributions of avalanche sizes were observed instead of the~1.63. In order to understand the new exponent values, we
expected power-law dependerjd®—14. On the other hand, discuss scaling relations fulfilled by the exponents and the
recent rice-pile experiments found power-law distributionsmapping to interface models.

of avalanche sizegl5] and tracer transit timegl6]. These First, we define the class of one-dimensional models: The
results sparked a renewed interest in the study of sandpilgystem consists of a plate of lendth with a wall ati=0,
models[16-23. and an open boundary atL+1. The profile of the pile

A class of sandpile models with stochastic toppling rulesevolves through two mechanisms: deposition and relaxation.
which is denoted “rice-pile” models, was found to display Deposition is always done at1 and one grain at a time.
SOC in one dimension with a power-law distribution of ava- During relaxation we look at alictivecolumns of the pile: A
lanche sizes characterized by the critical exponeatl.55 columni of the pile is considered active if, in the previous
[16—20. Recently, Ref.[24] proposed a mapping of the time step, it(i) received a grain from column-1, for the
model in[16] to the motion of a linear interface through a local models, or fromi—j, j=1,2,...N, for the nonlocal
disordered mediurf25]. For this universality class, to which models,(ii) toppled a grain to columin+ 1, or (iii) column
we will refer to as the local linear interfa¢eLl ) universality i+ 1 toppled one grain to its right neighbor. If a colurinis
class, the mapping allows the determination of all the expoactive and the local slopesh;=h(i)—h(i+1)>S,, then
nents characterizing the dynamics of the {i##,26 and  with probability p(sh;) several grains will be toppled from
shows thatr is clearly different from the mean-field value columni. Here we study the case
7=23/2(see, e.g[27]). Several other SOC models have been
conjectured to be in the LLI clag®23,24,28,29 Thus the p(sh)=min{1,g(sh;—S,)}, (1)
guestion arises of what mechanisms lead to the emergence of
the LLI universality class for one-dimensional stochasticwhereg=<1 is a parametef31]. The number of graindl to
sandpile models with a preferred direction. Previously, sandbe toppled is determined by either thmmited (1) or unlim-
pile models in higher dimensions have been classified aqted (u) rule [2]:
cording to their degree of “directednes$2,30].

In this paper we undertake an investigation of the mecha- No, (1)
nisms responsible for the emergence of a given universality “lsh—s ()
class for one-dimensional sandpile models with stochastic I :

toppling rules and we discuss the reasons for the robustne . . . .
of the LLI universality class. To this end, we study a class Oﬁ%e toppled grains are then redistributed according either to
thelocal (L) or nonlocal (N) rule [2]

@
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A A L TABLE I. Critical exponents for the four models studied. The
10° k o 3 definition of the critical exponents and classification of the models
r o‘o e, ] are given in the text. The data strongly suggest that the local models
o.. i, ooo%%% LI andLu belong to the LLI universality class, whereas the nonlo-
3 oo ® . At 1 cal modelsUn andLn belong to new universality classes.
10_3 r i \0%% - *e OOODOOOOOO 1
-~ . 20
E? i . oo, o Model T v y o
“ L \ ""..3,9, ] LI 155+0.02 2.24-0.03 1.83:0.04 1.42:0.03
w0 | ] Lu 156+0.02 2.26:0.03 1.9%*0.04 1.37%0.03
o Local limited NI 1.35+0.05 1.55-0.05 1.60-0.05 0.95-0.05
F * Local unlimited 1 Nu 1.63+0.02 2.75:0.05 2.20:0.04 1.50:-0.04
> Nonlocal limited
. L+ Nonlocal unlimited <
T T AR 10" We used plots of consecutive slopes for different system
s sizes to obtain the estimates for(see Table ). Then these

values were used to collapse the data according to(&q.
and extracty.

The results from our numerical simulations show that the
LI andLu models belong to the LLI universality class with
change in the exponentvisually clearer. For each model, we per- 7~1.55 andy~2.25, in agreement with the results of Refs.
formed runs with the order of 10grains deposited. The results [1_6’1—4' On the other hand, for thle(_)nlocalmod_els we ob-
shown are foiL=1600,g=1/8, S, =6, andNy=2 (for the limited taln valugs of the exponents that 5|gnal _the existence Qf new
models. Other values ofS, (ranging from 1 to & 1/g (ranging unlversah_ty classes. The nonlocal limitedNl) model is
from 4 to 8, andN, (ranging from 2 to % were also investigated Characterized by the exponents=1.35:0.05 and
without any observable change in the estimate of the exponentg;=1.55+0.05. The combined change of the number of
The slopes of the straight lines correspond to the exponent valud®ppled particles together with a nonlocal relaxation leads to
from Table I. For theN| model the bump before the cutoff leads to yet a new universality class: For the nonlocal unlimited
finite-size corrections, and we carried out simulations on systems upNu) model, we obtain the exponent values 1.63+0.02
to sizelL =20 000 in order to obtain more accurate estimates for theand »=2.75+0.05. We note that simple power laws, as in
exponents. Eq. (4), in all cases provide us with nice data collapses. This

result should be contrasted with the investigation of similar

Grains toppled to columnis>L leave the system. We desig- rules for the(nonstochasticmodels in Ref[2], where the
nate the models by the two letters that describe the rulegesults could not be described by a simple power law, but
applied: The local limited and unlimited models are referredinstead required a multifractal scaling form.
to asLI| andLu, while the nonlocal limited and unlimited To further test our conclusion regarding the universality
models are referred to abll and Nu. The parameter classes for the rice-pile models, we study different defini-
p(dh;) describes friction between the grains and accountsions of avalanche size: When using the total number of top-
for the fact that a large range of “stable” slopes was ob-plings, we find the same values ferand v as quoted above,
served in the rice-pile experiment. The parameteccounts  which is due to the fact that a toppling event on average
for the effect of gravity on the packing configurations. For adissipates a fixed amount of potential eneffpr a bounded
discussion of the physical interpretation of the models sedistribution of slopes For the lifetimeT, we find that the
also Refs[17,18. probability density function is well described by the scaling

We study the models in the slowly driven limit, i.e., we form
take the rate of deposition to be slow enough that any ava-
lanche, that might be started by a deposited particle, will D(T,L)=T"Yg(T/L7), 6)

have ended before a new particle is deposited. The simula-, h th | listed in Tablds S0 Fi
tions of the models show that each system quickly enters é”t the exponent values listed in Tabldsee also Fig. 2

FIG. 1. A log-log plot of the probability density of the dissi-
pated potential energy during an avalanche. For greater clarity,
the data for theLu, NI, and Nu were divided by factors of 0
1%, and 16, respectively.P(s) was multiplied bys to make the

steady state which is characterized by varying avalanch hlese resul;s reassure us tlhat HlieandLE modeIsN;ndezd
sizes and a complex structure in tif&7]. The sizes of an  Pelong to the LLI universality class, whereas thé an

avalanche can be defined in a number of ways. First, Wé\luNmodels tzjglong to nel\_/v un|\1er_sal|tyr<l:lasses. beved by th

follow the definition of Ref[15] and calculate the size ofan .| ext, we discuss scaling relations that are obeyed by the

avalanche as the total potential energy dissipated in betwe itical exponents. Itis well established that the average ava-
anche size scales as

deposited particles. In Fig. 1 we show the avalanche distri

butions for the various models. We find that the probability (s)~Ld ©6)
density function can be well described by the power-law '
form with the value of the exponemt depending on how the pile

is driven. Here we havg= 1 for all models(see, e.g9.2,23|
for otherq values. Combining Eqs(4) and (6), we obtain
the exponent relatiof2]

P(s,L)=s""f(s/L"), (4)

where 7 and v are critical universal exponentgAlterna-
tively, we have that(s,L) =L #f(s/L"), where 8= vr.] v(2—1)=q, 7)
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FIG. 2. A log-log plot of the probability density for the lifetime g1 3. A linear-log plot of the probability of the local slopes in
of avalanches. For greater clarity, the data forlthe NI, andNu  the steady state. The parameters of the runs are the same as in Fig.
were divided by factors of 10, #0and 10, respectively. The same 1 eycept that the system sizelis-400. It is visually apparent that
values were used for the parameters as in Fig. 1. The slopes of thgyjje the limited models lead to truncated Gaussian distributions,
straight lines correspond to the exponent values from Table I {he ynlimited models lead to more complicated forms. In particular,

] ) ) theNu model leads to a nearly exponential decay of the probability
which is fulfilled by all models. We have used of finding slopes larger thas, (which is related to the increase in
(s)~L"277 (in combination with(s?)) to obtain alternative the value ofr for this model.
estimates of the critical exponents and we obtain values in
complete accordance with those listed in Table |. Relationsurface tension term is the relevant terfin the
similar to Egs.(6) and (7) can be derived for the lifetimes renormalization-group senset follows that the coarse-
regarding the averagéd),(T2) and then used to extract the grained behavior of the local models is governed by the in-
critical exponents. Notice, however, that for tNet model,  terface equatiori9) as for the models in Ref$16,17).

(T) is a constant since we haye-2. From the scaling of the On the other hand, for thdl andNu models, the nonlo-

probability densitieg4) and(5) we obtain cal toppling rules generate nonlocal growth that affects the
interface motion. It has previously been shown that nonlocal
v(r—1)=o(y—1), (8) interactions will in general lead to the emergence of new

universality classef33,34], which is confirmed by our ob-
in agreement with our results{T*, with o=v/c). The  servations for thél| andNu models. The critical exponents
above relations imply that there are only two independentor the interface equations corresponding to Mieand Nu
exponents. models are not known. We can, nevertheless, qualitatively
As noted above, it was shown in R¢R4] that the rice-  ynderstand the change in the values of the expomeas
pile model in[16] can be mapped to a linear interface modelfo|lows: In general, we would expect that a nonlocal toppling

described by the continuum equation rule would lead to a decrease of the valuerdfecause more
5 columns in the pile are perturbed at every time step, thus
ﬁ_ DﬂJr H 9 creating larger avalanches. This is indeed what happens for

o ox? 70OGH). © the NI model. However, for theNu model we observe an

increase in the value of. To understand this result, it is

Here H, which is obtained af(x,t)=H(x—1t)—H(x,t), useful to look at the average slope of the pile and at the
counts the number of topplings of a given column anddistribution of local slopes for the different modéiee Fig.
7n(x,H) is a quenched “noise,” which is related to the sto- 3). For the limited models, the average slope remains prac-
chastic toppling probability. The rice-pile dynamics imposestically the same upon the change of the number of particles
a driving of the interface at=0. The mapping predicts that toppled: 9.3 for the_-| model and 9.1 for th&l model. This
v=1+ x, wherey is the so-called roughness exponent char-means that the change from ofiecal) to many (nonloca)
acterizing, e.g., the scaling of the width of the interface withcolumns being made “active” works as we described above,
system sizeL (see, e.g.,[32]). Numerically, one has i.e., itleads to a lower value af. On the other hand, for the
x~1.25 [25], in excellent agreement with the value unlimited models, a large change in the average slope is
v~2.25. In addition, the cutoff exponent for the avalancheobserved when we change the number of particles toppled:
lifetime is o=z, wherez is the so-called dynamic exponent 7.8 for theLu model and 6.2 for th&lu model. This implies
that describes the propagation of correlations. that, on average, only a few particles are toppled from un-

The results presented here show thatlth@andLu mod-  stable columns for thBlu model, but for the.u model more
els belong to the LLI universality class. This result can beparticles are toppled and this leads to a higher likelihood of
easily understood from the mapping to the linear interfacebig avalanches. As a result, we conclude thatRhemodel
model: The toppling of several particles does not change thehould have a higher value of than theLu model, as is
fact that the growth of the interface is still local. Since theindeed observed.
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In summary, we study a class of rice-pile models that, inrules can increase or decrease the value,dhus opening
a simple way, model some of the physical features of thehe way for the possibility that the rice-pile experiment in

experiments in Refd.15,16. We find that for local relax-

Ref. [15] can be explained by some extension of nonlocal

ation rules the models belong to the LLI universality classsandpile models by incorporating in detail the rice-grain dy-

that is characterized by the exponents 1.55 andy~1.87
(modelsLI| and Lu). On the other hand, for models with

namics.

nonlocal relaxation rules we obtain more complex dynamics We acknowledge discussions with A. Corral, M. H.

resulting in new universality classes: For tNé model we
obtain 7=1.35 andy~1.60, while for theNu model we
obtain 7~ 1.63 andy~2.20. Our results show that nonlocal
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